IT博文
MySQL 事务隔离级别详解
使用 docker compose 安装 tidb
架构师日记-如何写的一手好代码
生产事故-记一次特殊的OOM排查
Docker安装RabbitMQ——基于docker-compose工具
使用 docker-compose 部署单机 RabbitMQ
只需3步,即刻体验Oracle Database 23c
长达 1.7 万字的 explain 关键字指南!
Redis为什么能抗住10万并发?揭秘性能优越的背后原因
深度剖析Redis九种数据结构实现原理
【绩效季】遇到一个好领导有多重要,从被打差绩效到收获成长
为什么Redis不直接使用C语言的字符串?
Java阻塞队列中的异类,SynchronousQueue底层实现原理剖析
如何调整和优化 Go 程序的内存管理方式?
应用部署引起上游服务抖动问题分析及优化实践方案
Java 并发工具合集 JUC 大爆发!!!
卷起来!!这才是 MySQL 事务 & MVCC 的真相。
JDK8 到 JDK17 有哪些吸引人的新特性?
告别StringUtil:使用Java 11的全新String API优化你的代码
从JDK8飞升到JDK17,再到未来的JDK21
Java JMH Benchmark Tutorial
linux和macOS下top命令区别
Windows10关闭Hyper-V的三种方法
为什么应该选择 POSTGRES?
阿里云对象存储 OSS 限流超过阈值自动关闭【防破产,保平安】
Java高并发革命!JDK19新特性——虚拟线程(Virtual Threads)
“请不要在虚拟机中运行此程序”的解决方案
Spring中的循环依赖及解决
浅谈复杂业务系统的架构设计 | 京东云技术团队
面试题:聊聊TCP的粘包、拆包以及解决方案
操作日志记录实现方式
字节跳动技术团队-慢 SQL 分析与优化
Spring Boot 使用 AOP 防止重复提交
Controller层代码就该这么写,简洁又优雅!
SpringBoot 项目 + JWT 完成用户登录、注册、鉴权
重复提交不再是问题!SpringBoot自定义注解+AOP巧妙解决
SpringBoot 整合 ES 实现 CRUD 操作
SpringBoot 整合 ES 进行各种高级查询搜索
SpringBoot操作ES进行各种高级查询
SpringBoot整合ES查询
如何做架构设计? | 京东云技术团队
最值得推荐的五个VPN软件(便宜+好用+稳定),靠谱的V2ray梯子工具
我说MySQL每张表最好不超过2000万数据,面试官让我回去等通知?
vivo 自研鲁班分布式 ID 服务实践
使用自带zookeeper超简单安装kafka
推荐 6 个很牛的 IDEA 插件
喜马拉雅 Redis 与 Pika 缓存使用军规
「程序员转型技术管理」必修的 10 个能力提升方向
jdk17 下 netty 导致堆内存疯涨原因排查 | 京东云技术团队
如何优雅做好项目管理?
MySQL 到 TiDB:Hive Metastore 横向扩展之路
聊聊即将到来的 MySQL5.7 停服事件
Linux终端环境配置
微软 Edge 浏览器隐藏功能一览:多线程下载、IE 模式、阻止视频自动播放等
Hutool 中那些常用的工具类和实用方法
clash 内核删库?汇总目前常用的内核仓库和客户端
JDK11 升级 JDK17 最全实践干货来了 | 京东云技术团队
我是如何写一篇技术文的?
虚拟线程原理及性能分析
Java线程池实现原理及其在美团业务中的实践
Editplus和EmEditor配置一键编译java运行环境
用Spring Boot 3.2虚拟线程搭建静态文件服务器有多快?
SpringBoot中使用LocalDateTime踩坑记录 - 程序员偏安 - 博客园
程序员必备!10款实用便捷的Git可视化管理工具 - 追逐时光者 - 博客园
基于Netty开发轻量级RPC框架
开发Java应用时如何用好Log
复杂SQL治理实践 | 京东物流技术团队
火山引擎ByteHouse:分析型数据库如何设计并发控制?
多次崩了之后,阿里云终于改了
推荐程序员必知的四大神级学习网站
初探分布式链路追踪
新项目为什么决定用 JDK 17了
Java上进了,JDK21 要来了,并发编程再也不是噩梦了
mapstruct这么用,同事也开始模仿
再见RestTemplate,Spring 6.1新特性:RestClient 了解一下!
【MySQL】MySQL表设计的经验(建议收藏)
如何正确地理解应用架构并开发
解读工行专利CN112905176B
工商银行取得「基于 Spring Boot 的 web 系统后端实现方法及装置」专利
IDEA 2024.1:Spring支持增强、GitHub Action支持增强、更新HTTP Client等
TIOBE 2 月:Go 首次进入前十、“上古语言” COBOL 和 Fortran 排名飙升
Java 21 虚拟线程如何限流控制吞吐量
🎉 通用、灵活、高性能分布式 ID 生成器 | CosId 2.6.6 发布
20年编程,AI编程6个月,关于Copliot辅助编码工具,你想知道的都在这里
Java 8 内存管理原理解析及内存故障排查实践
消息队列选型之 Kafka vs RabbitMQ
从 MongoDB 到 PostgreSQL 的大迁移
腾讯云4月8日故障复盘及情况说明
PHP 在 2024 年还值得学习吗?
AMD集显安装显卡驱动之后出现黑屏,建议这样解决
使用 Docker 部署 moments 微信朋友圈 - 谱次· - 博客园
Java 17 是最常用的 Java LTS 版本
盘点Lombok的几个骚操作
Llama 3 + Ollama + Open WebUI打造本机强大GPT
如何优雅地编写缓存代码
Gmeek快速上手
笔记软件思源远程和本地接入大语言模型服务Ollama实现AI辅助写作(Windows篇)
Git Subtree:简单粗暴的多项目管理神器
这款轻量级规则引擎,真香!!
Ollama教程:本地LLM管理、WebUI对话、Python/Java客户端API应用
GLM-4-9B支持 Ollama 部署
智谱AI开源代码生成大模型第四代版本:CodeGeeX4-ALL-9B
美团二面:如何保证Redis与Mysql双写一致性?连续两个面试问到了!
免费开源好用,Obsidian和Omnivore真正实现一键联动剪藏文章,手把手教程!
得物 Redis 设计与实践
架构图怎么画?手把手教您,以生鲜电商为例剖析业务/应用/数据/技术架构图
使用Hutool要注意了!升级到6.0后你调用的所有方法都将报错 - 掘金
别再用雪花算法生成ID了!试试这个吧
无敌的Arthas!
Navicat Premium v16、v17 破解激活
🎉 分布式接口文档聚合,Solon 是怎么做的?
深入体验全新 Cursor AI IDE 后,说杀疯了真不为过!
Nacos 3.0 架构全景解读,AI 时代服务注册中心的演进
本文档使用 MrDoc 发布
-
+
SpringBoot操作ES进行各种高级查询
## **SpringBoot整合ES** 创建SpringBoot项目,导入 ES 6.2.1 的 RestClient 依赖和 ES 依赖。在项目中直接引用 es-starter 的话会报容器初始化异常错误,导致项目无法启动。如果有读者解决了这个问题,欢迎留言交流 ```text <!-- ES 客户端 --> <dependency> <groupId>org.elasticsearch.client</groupId> <artifactId>elasticsearch-rest-high-level-client</artifactId> <version>${elasticsearch.version}</version> </dependency> <!-- ES 版本 --> <dependency> <groupId>org.elasticsearch</groupId> <artifactId>elasticsearch</artifactId> <version>${elasticsearch.version}</version> </dependency> ``` 为容器定义 RestClient 对象 ```text /** * 在Spring容器中定义 RestClient 对象 * @Author: keats_coder * @Date: 2019/8/9 * @Version 1.0 * */ @Configuration public class ESConfig { @Value("${yunshangxue.elasticsearch.hostlist}") private String hostlist; // 127.0.0.1:9200 @Bean // 高版本客户端 public RestHighLevelClient restHighLevelClient() { // 解析 hostlist 配置信息。假如以后有多个,则需要用 , 分开 String[] split = hostlist.split(","); // 创建 HttpHost 数组,其中存放es主机和端口的配置信息 HttpHost[] httpHostArray = new HttpHost[split.length]; for (int i = 0; i < split.length; i++) { String item = split[i]; httpHostArray[i] = new HttpHost(item.split(":")[0], Integer.parseInt(item.split(":")[1]), "http"); } // 创建RestHighLevelClient客户端 return new RestHighLevelClient(RestClient.builder(httpHostArray)); } // 项目主要使用 RestHighLevelClient,对于低级的客户端暂时不用 @Bean public RestClient restClient() { // 解析hostlist配置信息 String[] split = hostlist.split(","); // 创建HttpHost数组,其中存放es主机和端口的配置信息 HttpHost[] httpHostArray = new HttpHost[split.length]; for (int i = 0; i < split.length; i++) { String item = split[i]; httpHostArray[i] = new HttpHost(item.split(":")[0], Integer.parseInt(item.split(":")[1]), "http"); } return RestClient.builder(httpHostArray).build(); } } ``` 在 yml 文件中配置 eshost ```text yunshangxue: elasticsearch: hostlist: ${eshostlist:127.0.0.1:9200} ``` 调用相关 API 执行操作 1. 创建操作索引的对象 2. 构建操作索引的请求 3. 调用对象的相关API发送请求 4. 获取响应消息 ```text /** * 删除索引库 */ @Test public void testDelIndex() throws IOException { // 操作索引的对象 IndicesClient indices = client.indices(); // 删除索引的请求 DeleteIndexRequest deleteIndexRequest = new DeleteIndexRequest("ysx_course"); // 删除索引 DeleteIndexResponse response = indices.delete(deleteIndexRequest); // 得到响应 boolean b = response.isAcknowledged(); System.out.println(b); } ``` 创建索引, 步骤和删除类似,需要注意的是删除的时候需要指定 ES 库分片的数量和副本的数量,并且在创建索引的时候可以将映射一起指定了。代码如下 ```text public void testAddIndex() throws IOException { // 操作索引的对象 IndicesClient indices = client.indices(); // 创建索引的请求 CreateIndexRequest request = new CreateIndexRequest("ysx_course"); request.settings(Settings.builder().put("number_of_shards", "1").put("number_of_replicas", "0")); // 创建映射 request.mapping("doc", "{\n" + " \"properties\": {\n" + " \"description\": {\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\",\n" + " \"search_analyzer\": \"ik_smart\"\n" + " },\n" + " \"name\": {\n" + " \"type\": \"text\",\n" + " \"analyzer\": \"ik_max_word\",\n" + " \"search_analyzer\": \"ik_smart\"\n" + " },\n" + "\"pic\":{ \n" + "\"type\":\"text\", \n" + "\"index\":false \n" + "}, \n" + " \"price\": {\n" + " \"type\": \"float\"\n" + " },\n" + " \"studymodel\": {\n" + " \"type\": \"keyword\"\n" + " },\n" + " \"timestamp\": {\n" + " \"type\": \"date\",\n" + " \"format\": \"yyyy-MM‐dd HH:mm:ss||yyyy‐MM‐dd||epoch_millis\"\n" + " }\n" + " }\n" + " }", XContentType.JSON); // 执行创建操作 CreateIndexResponse response = indices.create(request); // 得到响应 boolean b = response.isAcknowledged(); System.out.println(b); } ``` ### **Java API操作ES** ### **准备数据环境** 创建索引:ysx\_course 创建映射: ```text PUT http://localhost:9200/ysx_course/doc/_mapping { "properties": { "description": { // 课程描述 "type": "text", // String text 类型 "analyzer": "ik_max_word", // 存入的分词模式:细粒度 "search_analyzer": "ik_smart" // 查询的分词模式:粗粒度 }, "name": { // 课程名称 "type": "text", "analyzer": "ik_max_word", "search_analyzer": "ik_smart" }, "pic":{ // 图片地址 "type":"text", "index":false // 地址不用来搜索,因此不为它构建索引 }, "price": { // 价格 "type": "scaled_float", // 有比例浮点 "scaling_factor": 100 // 比例因子 100 }, "studymodel": { "type": "keyword" // 不分词,全关键字匹配 }, "timestamp": { "type": "date", "format": "yyyy-MM-dd HH:mm:ss||yyyy-MM-dd||epoch_millis" } } } ``` 加入原始数据: ```text POST http://localhost:9200/ysx_course/doc/1 { "name": "Bootstrap开发", "description": "Bootstrap是由Twitter推出的一个前台页面开发框架,是一个非常流行的开发框架,此框架集成了多种页面效果。此开发框架包含了大量的CSS、JS程序代码,可以帮助开发者(尤其是不擅长页面开发的程序人员)轻松的实现一个不受浏览器限制的精美界面效果。", "studymodel": "201002", "price":38.6, "timestamp":"2018-04-25 19:11:35", "pic":"group1/M00/00/00/wKhlQFs6RCeAY0pHAAJx5ZjNDEM428.jpg" } ``` ### **DSL搜索** DSL(Domain Specific Language)是ES提出的基于json的搜索方式,在搜索时传入特定的json格式的数据来完成不 同的搜索需求。DSL比URI搜索方式功能强大,在项目中建议使用DSL方式来完成搜索。 ### **查询全部** 原本我们想要查询全部的话,需要使用 GET 请求发送 \_search 命令,如今使用 DSL 方式搜索,可以使用 POST 请求,并在请求体中设置 JSON 字符串来构建查询条件 ```text POST http://localhost:9200/ysx_course/doc/_search ``` 请求体 JSON ```text { "query": { "match_all": {} // 查询全部 }, "_source" : ["name","studymodel"] // 查询结果包括 课程名 + 学习模式两个映射 } ``` 具体的测试方法如下:过程比较繁琐,好在条理还比较清晰 ```text // 搜索全部记录 @Test public void testSearchAll() throws IOException, ParseException { // 搜索请求对象 SearchRequest searchRequest = new SearchRequest("ysx_course"); // 指定类型 searchRequest.types("doc"); // 搜索源构建对象 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 搜索方式 // matchAllQuery搜索全部 searchSourceBuilder.query(QueryBuilders.matchAllQuery()); // 设置源字段过虑,第一个参数结果集包括哪些字段,第二个参数表示结果集不包括哪些字段 searchSourceBuilder.fetchSource(new String[]{"name","studymodel","price","timestamp"},new String[]{}); // 向搜索请求对象中设置搜索源 searchRequest.source(searchSourceBuilder); // 执行搜索,向ES发起http请求 SearchResponse searchResponse = client.search(searchRequest); // 搜索结果 SearchHits hits = searchResponse.getHits(); // 匹配到的总记录数 long totalHits = hits.getTotalHits(); // 得到匹配度高的文档 SearchHit[] searchHits = hits.getHits(); // 日期格式化对象 SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); for(SearchHit hit:searchHits){ // 文档的主键 String id = hit.getId(); // 源文档内容 Map<String, Object> sourceAsMap = hit.getSourceAsMap(); String name = (String) sourceAsMap.get("name"); // 由于前边设置了源文档字段过虑,这时description是取不到的 String description = (String) sourceAsMap.get("description"); // 学习模式 String studymodel = (String) sourceAsMap.get("studymodel"); // 价格 Double price = (Double) sourceAsMap.get("price"); // 日期 Date timestamp = dateFormat.parse((String) sourceAsMap.get("timestamp")); System.out.println(name); System.out.println(studymodel); System.out.println("你看不见我,看不见我~" + description); System.out.println(price); } } ``` ### **坑:red>** 执行过程中遇到的问题:不能对这个值进行初始化,导致 Spring 容器无法初始化 ```text Caused by: java.lang.IllegalArgumentException: Could not resolve placeholder 'yunshangxue.elasticsearch.hostlist' in value "${yunshangxue.elasticsearch.hostlist}" ``` 通过检查 target 目录发现,生成的 target 文件包中没有将 yml 配置文件带过来... 仔细对比发现,我的项目竟然变成了一个不是 Maven 的项目。重新使用 IDEA 导入 Mavaen 工程之后便能正常运行了 ### **分页查询** 我们来 look 一下 ES 的分页查询参数: ```text { // from 起始索引 // size 每页显示的条数 "from" : 0, "size" : 1, "query": { "match_all": {} }, "_source" : ["name","studymodel"] } ```  通过查询结果可以发现,我们设置了分页参数之后, hits.total 仍然是 3,表示它找到了 3 条数据,而按照分页规则,它只会返回一条数据,因此 hits.hits 里面只有一条数据。这也符合我们的业务规则,在查询前端页面显示总共的条数和当前的数据。 由此,我们就可以通过 Java API 来构建查询条件了:对上面查询全部的代码进行如下改造: ```text // 搜索源构建对象 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); int page = 2; // 页码 int size = 1; // 每页显示的条数 int index = (page - 1) * size; searchSourceBuilder.from(index); searchSourceBuilder.size(1); // 搜索方式 // matchAllQuery搜索全部 searchSourceBuilder.query(QueryBuilders.matchAllQuery()); ``` ### **精确查询 TermQuery** Term Query为精确查询,在搜索时会整体匹配关键字,不再将关键字分词 例如: ```text { "query": { "term": { // 查询的方式为 term 精确查询 "name": "spring" // 查询的字段为 name 关键字是 spring } }, "_source": [ "name", "studymodel" ] } ``` 此时查询的结果是: ```text "hits": [ { "_index": "ysx_course", "_type": "doc", "_id": "3", "_score": 0.9331132, "_source": { "studymodel": "201001", "name": "spring开发基础" } } ] ``` 查询到了上面这条数据,因为 spring开发基础 分完词后是 spring 开发 基础 ,而查询关键字是 spring 不分词,这样当然可以匹配到这条记录,但是当我们修改关键字为 spring开发,按照往常的查询方法,也是可以查询到的。但是 term 不一样,它不会对关键字分词。结果可想而知是查询不到的 JavaAPI如下: ```text // 搜索方式 // termQuery 精确查询 searchSourceBuilder.query(QueryBuilders.termQuery("studymodel", "201002")); ``` ### **根据 ID 查询:** 根据 ID 精确查询和根据其他条件精确查询是一样的,不同的是 id 字段前面有一个下划线注意写上 ```text searchSourceBuilder.query(QueryBuilders.termQuery("_id", "1")); ``` 但是,当**一次查询多个 ID 时**,相应的 API 也应该改变,使用 termsQuery 而不是 termQuery。多了一个 s ### **全文检索 MatchQuery** MatchQuery 即全文检索,会对关键字进行分词后匹配词条。 query:搜索的关键字,对于英文关键字如果有多个单词则中间要用半角逗号分隔,而对于中文关键字中间可以用 逗号分隔也可以不用 operator:设置查询的结果取交集还是并集,并集用 or, 交集用 and ```text { "query": { "match": { "description": { "query": "spring开发", "operator": "or" } } } } ``` 有时,我们需要设定一个量化的表达方式,例如查询 spring开发基础,这三个词条。我们需求是至少匹配两个词条,这时 operator 属性就不能满足要求了,ES 还提供了另外一个属性:minimum\_should\_match 用一个百分数来设定应该有多少个词条满足要求。例如查询: “spring开发框架”会被分为三个词:spring、开发、框架 设置"minimum\_should\_match": "80%"表示,三个词在文档的匹配占比为80%,即3\*0.8=2.4,**向下取整**得2,表 示至少有两个词在文档中要匹配成功。 ### **JavaAPI** 通过 matchQuery.minimumShouldMatch 的方式来设置条件 ```text // matchQuery全文检索 searchSourceBuilder.query(QueryBuilders.matchQuery("description", "Spring开发框架").minimumShouldMatch("70%")); ``` ### **多字段联合搜索 MultiQuery** 上面的 MatchQuery 有一个短板,假如用户输入了某关键字,我们在查找的时候并不知道他输入的是 name 还是 description,这时我们用什么都不合适,而 MultiQuery 的出现解决了这个问题,他可以通过 fields 属性来设置多个域联合查找:具体用法如下 ```text { "query": { "multi_match": { "query": "Spring开发", "minimum_should_match": "70%", "fields": ["name", "description"] } } } ``` JavaAPI ```text searchSourceBuilder.query(QueryBuilders.multiMatchQuery("Spring开发框架", "name", "description").minimumShouldMatch("70%")); ``` ### **提升 boost** 在多域联合查询的时候,可以通过 boost 来设置某个域在计算得分时候的比重,比重越高的域当他符合条件时计算的得分越高,相应的该记录也更靠前。通过在 fields 中给相应的字段用 ^权重倍数来实现 ```text "fields": ["name^10", "description"] ``` 上面的代码表示给 name 字段提升十倍权重,查询到的结果: ```text { "_index": "ysx_course", "_type": "doc", "_id": "3", "_score": 13.802518, // 可以清楚的发现,得分竟然是 13 了 "_source": { "name": "spring开发基础", "description": "spring 在java领域非常流行,java程序员都在用。", "studymodel": "201001", "price": 88.6, "timestamp": "2018-02-24 19:11:35", "pic": "group1/M00/00/00/wKhlQFs6RCeAY0pHAAJx5ZjNDEM428.jpg" } }, ``` 而在 Java 中,仍然可以通过链式编程来实现 ```text searchSourceBuilder.query(QueryBuilders.multiMatchQuery("Spring开发框架", "name", "description").field("name", 10)); // 设置 name 10倍权重 ``` ### **布尔查询 BoolQuery** 如果我们既要对一些字段进行分词查询,同时要对另一些字段进行精确查询,就需要使用布尔查询来实现了。布尔查询对应于Lucene的BooleanQuery查询,实现将多个查询组合起来,有三个可选的参数: must:文档必须匹配must所包括的查询条件,相当于 “AND” should:文档应该匹配should所包括的查询条件其中的一个或多个,相当于 "OR" must\_not:文档不能匹配must\_not所包括的该查询条件,相当于“NOT” ```text { "query": { "bool": { // 布尔查询 "must": [ // 查询条件 must 表示数组中的查询方式所规定的条件都必须满足 { "multi_match": { "query": "spring框架", "minimum_should_match": "50%", "fields": [ "name^10", "description" ] } }, { "term": { "studymodel": "201001" } } ] } } } ``` JavaAPI ```text // 搜索方式 // 首先构造多关键字查询条件 MultiMatchQueryBuilder matchQueryBuilder = QueryBuilders.multiMatchQuery("Spring开发框架", "name", "description").field("name", 10); // 然后构造精确匹配查询条件 TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("studymodel", "201002"); // 组合两个条件,组合方式为 must 全满足 BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); boolQueryBuilder.must(matchQueryBuilder); boolQueryBuilder.must(termQueryBuilder); // 将查询条件封装给查询对象 searchSourceBuilder.query(boolQueryBuilder); ``` ### **过滤器** 定义过滤器查询,是在原本查询结果的基础上对数据进行筛选,因此省略了重新计算的分的步骤,效率更高。并且方便缓存。推荐尽量使用过虑器去实现查询或者过虑器和查询共同使用,过滤器在布尔查询中使用,下边是在搜索结果的基础上进行过滤: ```text { "query": { "bool": { "must": [ { "multi_match": { "query": "spring框架", "minimum_should_match": "50%", "fields": [ "name^10", "description" ] } } ], "filter": [ { // 过滤条件:studymodel 必须是 201001 "term": {"studymodel": "201001"} }, { // 过滤条件:价格 >=60 <=100 "range": {"price": {"gte": 60,"lte": 100}} } ] } } } ``` **注意**:range和term一次只能对一个Field设置范围过虑。 JavaAPI ```text // 首先构造多关键字查询条件 MultiMatchQueryBuilder matchQueryBuilder = QueryBuilders.multiMatchQuery("Spring框架", "name", "description").field("name", 10); // 添加条件到布尔查询 BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); boolQueryBuilder.must(matchQueryBuilder); // 通过布尔查询来构造过滤查询 boolQueryBuilder.filter(QueryBuilders.termQuery("studymodel", "201001")); boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gte(60).lte(100)); // 将查询条件封装给查询对象 searchSourceBuilder.query(boolQueryBuilder); ``` ### **排序** 我们可以在查询的结果上进行二次排序,支持对 keyword、date、float 等类型添加排序,text类型的字段不允许排序。排序使用的 JSON 格式如下: ```text { "query": { "bool": { "filter": [ { "range": { "price": { "gte": 0, "lte": 100 } } } ] } }, "sort": [ // 注意这里排序是写在 query key 的外面的。这就表示它的API也不是布尔查询提供 { "studymodel": "desc" // 对 studymodel(keyword)降序 }, { "price": "asc" // 对 price(double)升序 } ] } ``` 由上面的 JSON 数据可以发现,排序所属的 API 是和 query 评级的,因此在调用 API 时也应该选择对应的 SearchSourceBuilder 对象 ```text // 排序查询 @Test public void testSort() throws IOException, ParseException { // 搜索请求对象 SearchRequest searchRequest = new SearchRequest("ysx_course"); // 指定类型 searchRequest.types("doc"); // 搜索源构建对象 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 搜索方式 // 添加条件到布尔查询 BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); // 通过布尔查询来构造过滤查询 boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gte(0).lte(100)); // 将查询条件封装给查询对象 searchSourceBuilder.query(boolQueryBuilder); // 向搜索请求对象中设置搜索源 searchRequest.source(searchSourceBuilder); // 设置排序规则 searchSourceBuilder.sort("studymodel", SortOrder.DESC); // 第一排序规则 searchSourceBuilder.sort("price", SortOrder.ASC); // 第二排序规则 // 执行搜索,向ES发起http请求 SearchResponse searchResponse = client.search(searchRequest); // 搜索结果 SearchHits hits = searchResponse.getHits(); // 匹配到的总记录数 long totalHits = hits.getTotalHits(); // 得到匹配度高的文档 SearchHit[] searchHits = hits.getHits(); // 日期格式化对象 soutData(searchHits); } ``` ### **高亮显示** 高亮显示可以将搜索结果一个或多个字突出显示,以便向用户展示匹配关键字的位置。 高亮三要素:高亮关键字、高亮前缀、高亮后缀 ```text { "query": { "bool": { "must": [ { "multi_match": { "query": "开发框架", "minimum_should_match": "50%", "fields": [ "name^10", "description" ], "type": "best_fields" } } ] } }, "sort": [ { "price": "asc" } ], "highlight": { "pre_tags": [ "<em>" ], "post_tags": [ "</em>" ], "fields": { "name": {}, "description": {} } } } ``` 查询结果的数据如下:  Java 代码如下,注意到上面的 JSON 数据, highlight 和 sort 和 query 依然是同级的,所以也需要用 SearchSourceBuilder 对象来设置到搜索条件中 ```text // 高亮查询 @Test public void testHighLight() throws IOException, ParseException { // 搜索请求对象 SearchRequest searchRequest = new SearchRequest("ysx_course"); // 指定类型 searchRequest.types("doc"); // 搜索源构建对象 SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); // 搜索方式 // 首先构造多关键字查询条件 MultiMatchQueryBuilder matchQueryBuilder = QueryBuilders.multiMatchQuery("Spring框架", "name", "description").field("name", 10); // 添加条件到布尔查询 BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); boolQueryBuilder.must(matchQueryBuilder); // 通过布尔查询来构造过滤查询 boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gte(60).lte(100)); // 将查询条件封装给查询对象 searchSourceBuilder.query(boolQueryBuilder); // *********************** // 高亮查询 HighlightBuilder highlightBuilder = new HighlightBuilder(); highlightBuilder.preTags("<em>"); // 高亮前缀 highlightBuilder.postTags("</em>"); // 高亮后缀 highlightBuilder.fields().add(new HighlightBuilder.Field("name")); // 高亮字段 // 添加高亮查询条件到搜索源 searchSourceBuilder.highlighter(highlightBuilder); // *********************** // 设置源字段过虑,第一个参数结果集包括哪些字段,第二个参数表示结果集不包括哪些字段 searchSourceBuilder.fetchSource(new String[]{"name","studymodel","price","timestamp"},new String[]{}); // 向搜索请求对象中设置搜索源 searchRequest.source(searchSourceBuilder); // 执行搜索,向ES发起http请求 SearchResponse searchResponse = client.search(searchRequest); // 搜索结果 SearchHits hits = searchResponse.getHits(); // 匹配到的总记录数 long totalHits = hits.getTotalHits(); // 得到匹配度高的文档 SearchHit[] searchHits = hits.getHits(); // 日期格式化对象 soutData(searchHits); } ``` 根据查询结果的数据结构来获取高亮的数据,替换原有的数据: ```text private void soutData(SearchHit[] searchHits) throws ParseException { SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss"); for (SearchHit hit : searchHits) { // 文档的主键 String id = hit.getId(); // 源文档内容 Map<String, Object> sourceAsMap = hit.getSourceAsMap(); String name = (String) sourceAsMap.get("name"); // 获取高亮查询的内容。如果存在,则替换原来的name Map<String, HighlightField> highlightFields = hit.getHighlightFields(); if( highlightFields != null ){ HighlightField nameField = highlightFields.get("name"); if(nameField!=null){ Text[] fragments = nameField.getFragments(); StringBuffer stringBuffer = new StringBuffer(); for (Text str : fragments) { stringBuffer.append(str.string()); } name = stringBuffer.toString(); } } // 由于前边设置了源文档字段过虑,这时description是取不到的 String description = (String) sourceAsMap.get("description"); // 学习模式 String studymodel = (String) sourceAsMap.get("studymodel"); // 价格 Double price = (Double) sourceAsMap.get("price"); // 日期 Date timestamp = dateFormat.parse((String) sourceAsMap.get("timestamp")); System.out.println(name); System.out.println(id); System.out.println(studymodel); System.out.println("你看不见我,看不见我~" + description); System.out.println(price); } } ``` > 作者:**[@后青春期的Keats](https://link.zhihu.com/?target=https%3A//www.cnblogs.com/keatsCoder)** 出处:[https://www.cnblogs.com/keatsCoder/p/11341835.html](https://link.zhihu.com/?target=https%3A//www.cnblogs.com/keatsCoder/p/11341835.html)
admin
2023年5月29日 07:04
转发文档
收藏文档
上一篇
下一篇
手机扫码
复制链接
手机扫一扫转发分享
复制链接
Markdown文件
PDF文档(打印)
分享
链接
类型
密码
更新密码